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Supervised learning Empirical risk minimization is optimal control Augmented empirical risk minimization Concluding remarks

Supervised learning

Goal: Approximate an unknown function f : Rd
! Rm given data

D :=
n
x
(i)
, f(x(i))

o

i2[n]
⇢ Rd

⇥ Rm
.

We distinguish:

I Classification: ran(f) is
{ej}j2[m] ⇢ Rm.

Image, audio: d > 103, d � m.
.

I Regression: ran(f) is Rm.

PDE: fixed initial/boundary
data, then learn (t, x) 7! u(t, x)
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(Feed-forward) neural networks

fapprox(x) := Px[nT ](x) for x 2 Rd
.

where

I P 2 Rm⇥dnT (suppose given)

I x[nT ](x) 2 RdnT is output of neural net with nT > 1 layers:

(
x[k+1] = c

[k]
�(a[k] · x[k] + b

[k]) k 2 {0, . . . , nT � 1}

x[0] = x,

state x[k+1]
2 Rdk+1 and weights c

[k]
2 Rdk+1 , a

[k]
2 Rdk , b[k] 2 R

I � 2 C
0,1(R), typically �(x) = (x)+ or �(x) = tanh(x)

I widths dk given
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Residual neural networks (ResNets)

Let dk = d for all k.

Consider
(
x[k+1] = x[k] +4tc

[k](a[k] · x[k] + b
[k])+ k 2 {0, . . . , nT � 1}

x[0] = x,

with c
[k]
, a

[k]
2 Rd and b

[k]
2 R.
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Neural ODEs

Natural to consider [E ’17]:

(
ẋ(t) = c(t)(a(t) · x(t) + b(t))+ t 2 (0, T ),

x(0) = x

And now fapprox(x) := Px(T ).

Useful in practice:

I Beyond Euler schemes [Chen et al. ’18]

I Structure preserving schemes [Schönlieb et al. ’20, ’22]

I Beyond supervised learning (wait until the end of the talk)

I More compact form for analysis
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Approximation theory

Before using the data, a ”well-posedness” question can be asked.

Problem (Universal approximation)

Given f 2 H and ✏ > 0, find (a✏, b✏, c✏) 2 L
1((0, T );R2d+1) such that

kfapprox,✏ � fkH 6 ✏

I Feed-forward nets: [Cybenko ’89], [Barron ’93] (nT = 1 and
H = C

0([0, 1]d)), Pinkus ’99 (nT > 1)

I Neural ODEs: [Li, Lin, Shen ’22], [Ruiz-Balet, Zuazua ’22]
(H = L

2((0, 1)d;Rm)). ResNets are corollary as controls are
piecewise constant

I Strategies generally non-algorithmic and su↵er from curse of
dimensionality
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Learning is control

I To learn, we can only use the data D .

I So, we consider

Problem

Find controls (a, b, c) 2 L
1((0, T );R2d+1) such that

Pxi(T ) = f(x(i)) 8i 2 [n]

where (
ẋi(t) = c(t)(a(t) · xi(t) + b(t))+ t 2 (0, T ),

xi(0) = x
(i)
,

(1)

and hope predictions of f(x) are good if we take initial data points x
outside D (generalization).

I It’s a simultaneous/ensemble control(lability) problem!

I Nonlinear control-state interaction is necessary

6 / 27



Supervised learning Empirical risk minimization is optimal control Augmented empirical risk minimization Concluding remarks

Learning is control

I To learn, we can only use the data D .

I So, we consider

Problem

Find controls (a, b, c) 2 L
1((0, T );R2d+1) such that

Pxi(T ) = f(x(i)) 8i 2 [n]

where (
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What is done in practice

Least squares, with penalty � > 0:

min
✓=(a,b,c)

(a,b)2H
1((0,T );Rd+1)

c2L
2((0,T );Rd)

xi solves (1)

1

n

X

i2[n]

���Pxi(T )� f(x(i))
���
2

| {z }
:=E(X(t))

+�k✓k
2
H1⇥L2 (2)

I Empirical risk minimization: E(·) is the empirical risk.

I H
1 su�ces for compactness – if p 2 [1,1), ' : R ! R is s.t.

' � un * ' � u
⇤ in L

p(0, 1) for any un * u
⇤ in L

p(0, 1), then ' is
a�ne!

I Can go way beyond squared Euclidean distance (even non-distances
such as cross-entropy for classification)
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github.com/borjanG/dynamical.systems

T = 5, nT = 16, n = 3000,� = 0.01
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Optimal control over long time

I In practice nT can be large (deep learning)

I But 4t = T

nT
, so nT large means T large

Question

For global minimizer ✓T for (2) and XT 2 C
0([0, T ];Rd⇥n) matrix with

unique solutions xi to (1) as columns, what happens when T ! 1?

Definition (Interpolation)

(1) interpolates D if 9✓ 2 H
1((0, 1);Rd+1)⇥ L

2((0, 1); Sd�1) such that

Pxi(1) = f(x(i)) 8i 2 [n]

where xi 2 C
0([0, 1];Rd) solves (1) with control ✓. (I.e., E(X(1)) = 0.)
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Theorem [Esteve-Yagüe, G., Pighin, Zuazua, ’22b]

Fix � > 0; c in (2) minimized over L2((0, T ); Sd�1); (1) interpolates D .
For T > 1, any global minimizer ✓T for (2) and XT 2 C

0([0, T ];Rd⇥n)
matrix with columns solutions to (1) satisfy:

1. 9C(D ,�) > 0,

E(XT (T )) =
1

n

X

i2[n]

���Pxi(T )� f(x(i))
���
2
6 C

T

2. XTk(Tk) ! X⇤ for some subsequence Tk > 0, Tk ! 1 (k ! 1)
and X⇤

2 Rd⇥n with E(X⇤) = 0

3. Set ✓k(t) := (TkaTk(tTk), TkbTk(tTk), cTk(tTk)) for t 2 [0, 1]. Then
✓k ! ✓

⇤ strongly in H
1
⇥ L

2 where ✓
⇤ is some solution to

inf
✓=(a,b,c)

(a,b)2H
1((0,1);Rd+1)

c2L
2((0,1);Sd�1)

E(X(1))=0

k✓k
2
H1⇥L2
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1. ✓1 = (a1, b1, c1) 2 H
1((0, 1);Rd+1)⇥ L

2((0, T ); Sd�1) yields x1
i

solution to (1) on [0, 1]. Then

✓T (·) =

✓
1

T
a1

⇣
·

T

⌘
,
1

T
b1

⇣
·

T

⌘
, c1

⇣
·

T

⌘◆

defined on [0, T ], yields solution xT
i
(·) ⌘ x1

i
( ·
T
) to (1)

2. In turn,

E(XT (T )) + �

Z
T

0
|✓T (t)|

2
dt

= E(X1(1)) +
�

T

Z 1

0
|(a1(s), b1(s))|

2
ds+ �.

3. Take interpolation control (on (0, 1)), stretch it out to (0, T ), and
compare with ✓T .

Corollary

In this setting, T ! 1 is equivalent to � ! 0.

11 / 27
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Interpolation, Controllability

1. Combinatorics. For (1): [Li, Lin, Shen ’22], [Ruiz-Balet, Zuazua
’22]. Distinct targets if d = m.

2. Lie algebra. For
ẋi(t) = ✓(t)�(xi(t)), (3)

with � 2 C
0,1

\ C
1(R) element-wise: [Agrachev, Sarychev ’22]

A digression - little homotopy method inspired by [Coron-Trélat ’04]:

Proposition [Esteve-Yagüe, G., Pighin, Zuazua ’22b]

Suppose d > n. Fix X1
2 Rd⇥n with

span{�(x11), . . . ,�(x
1
n
)} = Rd

Then 9r, C > 0 such that 8X0
2 Br(X

1), 9✓ 2 L
1((0, 1);Rd⇥d) for

which the solutions xi to (3) with xi(0) = x0
i
satisfy xi(1) = x1

i
8i 2 [n].

Moroever

k✓kL1 6 C

T
|X1

�X0
|.
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Generalization: a statistical approach

Focus on dynamics (3).

I Look at {x(i)
, y

(i)
}i2[n] ⇢ Rd

⇥ Rm as i.i.d. samples from unknown
joint law µ 2 Pc(Rd

⇥ Rm). Then f(x) := E(y|x) which minimizes
E(x,y)⇠µ|f(x)� y|

2 over all functions f .

I Associated to (2): population risk minimization

min
✓2L

2((0,T );Rd⇥d)
x✓ solves (3)
x✓(0)=x

E(x,y)⇠µ|Px✓(T )� y|
2 + �

Z
T

0
|✓(t)|2dt (4)

I Generalization: ✓n minimizer of Jn in (2), and ✓
⇤ of J in (4), then

9↵ > 0:

E(x,y)⇠µ |Px✓n(T )� y|
2
� E(x,y)⇠µ|Px✓

⇤
(T )� y|

2 = O

✓
1

n↵

◆

13 / 27
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What is known

1. [E, Han, Li ’19]:
I Pontryagin Maximum Principle for both (2) and (4);
I Hamiltonian ✓ 7! H(x, p, ✓) = p · ✓�(x) + �|✓|

2 strongly concave for
any (x, p)

I given ✓
⇤, with high probability 9✓n critical point of Hamiltonian for

(2) such that

E(x,y)⇠µ |Px✓n(T )� y|
2
� E(x,y)⇠µ|Px✓⇤(T )� y|

2 6 C(d)

n
1
2�✏

with high probability, for any ✏ > 0.
I Ensuring that ✓n is global minimizer: true when T ⌧ 1, so � � 1!

2. [Bonnet et al. ’22]:
I For � � 1, Jn strongly convex on any L

2 ball

I Mean-field PMP . . . rate O

✓
1

n
1
d

◆
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An observation with C. Letrouit and P. Rigollet

1. Strong convexity on any B ⇢ L
2((0, T );Rd⇥d)

k✓1 � ✓2k
2
L2 . |rJn(✓1)�rJn(✓2)| , 8✓1, ✓2 2 B.

2. Then

k✓n � ✓
⇤
k
2
L2 . |rJn(✓n)�rJn(✓

⇤)|

= |rJ(✓⇤)�rJn(✓
⇤)|

=

������
E(x,y)⇠µr✓`(x

✓
⇤
(T ), y)�

1

n

X

i2[n]

r✓`(x
✓
⇤

i
(T ), y(i))

������

3. ✓
⇤ is fixed, not random. Sum of bounded, independent random
variables, compared with expectation ) concentration of measure
(Hoe↵ding inequality): 8� > 0, 9 > 0 such that 8n > 1,

P(k✓n � ✓
⇤
k
2
L2 6 /

p
n) > 1� �.

Bound J(✓n)� J(✓⇤) from above and get O( 1p
n
) rate.
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Improving 1/T

We consider

inf
c2L

2((0,T );Rd)
xi(·) solves (1)

Z
T

0

1

n

X

i2[n]

���Pxi(t)� f(x(i))
���
2
dt+

Z
T

0
|c(t)|2dt (5)

Controls a 2 L
1(R+;Rd) and b 2 L

1(R+) assumed fixed in (1) (need
L
2-penalties and compactness simultaneously)

Can also consider dynamics as (3), or (a, b) can be optimized over Sd.
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Two assumptions

Recall, for X = [x1 · · · xn] 2 Rd⇥n:

E(X) :=
1

n

X

i2[n]

���Pxi � f(x(i))
���
2
.

Assumption 1.

Set Z := {Z 2 Rd⇥n : E(Z) = 0}. Then P 2 Rm⇥d is such that

1dist(X,Z)2 6 E(X) 6 2dist(X,Z)2

for some 2 > 1 > 0, and 8X 2 Rd⇥n.

I Lower bound: global Lojasiewicz inequality for analytic functions
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Assumption 2.

Fix X0 = [x01 · · · x
0
n
] 2 Rd⇥n. We assume 9c 2 L

2((0, 1);Rd) such that
the matrix X 2 C

0([0, 1];Rd⇥n) with columns xi(·) solutions to (1) with
xi(0) = x0

i
, satisfies X(1) 2 Z.

Moreover, 9C(n) > 0,

Z 1

0
|c(t)|2dt 6 C(n) dist(X0

,Z)2.

I When d > m, then P 2 Rd⇥n is generically surjective and

Z =
n
[z1 · · · zn] 2 Rd⇥n : zi 2 P

�1
�
f(x(i))

 o

So xi(1) 2 P
�1
�
f(x(i))

 
for all i 2 [n] and

Z 1

0
|c(t)|2dt 6 C(n) inf

[z1···zn]2Rd⇥n

zi2P
�1{f(x(i))}

X

i2[n]

��x0
i
� zi

��2 .

18 / 27



Supervised learning Empirical risk minimization is optimal control Augmented empirical risk minimization Concluding remarks

Assumption 2.

Fix X0 = [x01 · · · x
0
n
] 2 Rd⇥n. We assume 9c 2 L

2((0, 1);Rd) such that
the matrix X 2 C

0([0, 1];Rd⇥n) with columns xi(·) solutions to (1) with
xi(0) = x0

i
, satisfies X(1) 2 Z.

Moreover, 9C(n) > 0,

Z 1

0
|c(t)|2dt 6 C(n) dist(X0

,Z)2.

I When d > m, then P 2 Rd⇥n is generically surjective and

Z =
n
[z1 · · · zn] 2 Rd⇥n : zi 2 P

�1
�
f(x(i))

 o

So xi(1) 2 P
�1
�
f(x(i))

 
for all i 2 [n] and

Z 1

0
|c(t)|2dt 6 C(n) inf

[z1···zn]2Rd⇥n

zi2P
�1{f(x(i))}

X

i2[n]

��x0
i
� zi

��2 .

18 / 27



Supervised learning Empirical risk minimization is optimal control Augmented empirical risk minimization Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, ’22a]

Suppose m = d and P = Id. Then 9T⇤,! > 0, C > 1 such that for
T > T⇤, any global minimizer cT 2 L

2((0, T );Rd) to (5) and xT
i
solution

to (1) satisfy

X

i2[n]

���xTi (t)� f(x(i))
���
2
+ |cT (t)|

2 6

0

@C

X

i2[n]

���x(i)
� f(x(i))

���
2

1

A e
�!t

8t 2 [0, T ].
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Theorem [Esteve-Yagüe, G., Pighin, Zuazua, ’22b]

Replace (·)+ by � 2 L
1(R) in (1) and let d > m. Then 9T⇤,! > 0,

C > 1 such that for T > T⇤, any global minimizer cT 2 L
2((0, T );Rd) to

(5) and xT
i
solution to (1) satisfy

X

i2[n]

���PxT
i
(t)� f(x(i))

���
2
+ inf

[z1···zn]2Rd⇥n

zi2P
�1{f(x(i))}

X

i2[n]

��xT
i
(t)� zi

��2 + |cT (t)|
2

6

0

B@C inf
[z1···zn]2Rd⇥n

zi2P
�1{f(x(i))}

X

i2[n]

���x(i)
� zi

���
2

1

CA e
�!t

8t 2 [0, T ].
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It’s faster

Takeaway: when possible, proceed in model predictive control manner:
start with small T , evaluate error, and proceed by increasing T adaptively.
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Important tool

Focus on d = m, P = Id.

Lemma

9C1 > 0 independent of T , 8c 2 L
2 and xi solution to (1):

sup
t2[0,T ]

X

i2[n]

���xi(t)� f(x(i))
���
2
6 C1

 
X

i2[n]

���x(i)
� f(x(i))

���
2

+

Z
T

0

X

i2[n]

���xi(t)� f(x(i))
���
2
dt

+

Z
T

0
|c(t)|2dt

!
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Ingredients

1. caux(t) := c1(t)1[0,1](t), where c1 ensures controllability. As cT is
optimal and caux is not, 9C2 > 0 independent of T :

Z
T

0

X

i2[n]

���xTi (t)� f(x(i))
���
2
dt+

Z
T

0
|cT (t)|

2
dt 6 C2

X

i2[n]

���x(i)
� f(x(i))

���
2

Lemma yields pointwise bound uniform in T .

2. Shrink time-intervals:
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Extensions

I Using this method, we can’t have exponential decay with
BV -penalty for (a, b) as norm tracks singularities unlike L

2. We can
at most get decay of time-averages of the error and controls.

I Results are more general. Per [Esteve-Yagüe, G., Pighin, Zuazua
’22a; G., Zuazua ’22]: controllable PDE

yt(t, x)�Ay(t, x) +Bu(t, x) = f(y(t, x))

with Lipschitz (possibly non-smooth) nonlinearity f and cost

�(y(T )) +

Z
T

0
|y(t)� ȳ|

2
H dt+

Z
T

0
|u(t)|2U dt

where ȳ is any steady state ) exponential turnpike without
smoothness or smallness assumptions!
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Further comments

1. L
1(0, T )-penalties for (3) [Esteve-Yagüe, G. ’22]:

0 1 2 3 4 5

tk (k is a layer)

0

1

2

3

4

5

6

7

8

2. Variable-width ResNets:

x[k+1] = ⇧[k]x[k] + c
[k]
�(a[k]x[k])

where ⇧[k] : Rdk ! Rdk+1 , a[k] 2 Rdk+1⇥dk , c[k] 2 Rdk+1⇥dk+1 . So,

@tx(t, z) =

Z 1

0
c(t, z, ⇣)�(a(t, z, ⇣)x(t, ⇣))d⇣ (0, T )⇥ (0, 1)

Helpful for structured controls (convolutional neural networks).
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Outlook

1. Control
I Exponential decay/turnpike with BV -penalty for (a, b)?
I Using control: are feedback controls for n � 1 trajectories possible,

useful?
I Extrapolating to control: can we get robustness using the lens of

many data and statistics?

2. Unsupervised learning/generative modeling with normalizing flows
(E. Vanden-Eijnden et al.).
I NF: di↵eomorphism T : Rd

! Rd optimized to transport
{z

(i)
}i2[n] ⇢ Rd samples from a known law ⇢0 (Gaussian with unit

variance) to unknown target law ⇢1 of which we know samples
{x

(i)
}i2[n] ⇢ Rd.

I Parametrizing T by the flow of a neural ODE, and then solving an
optimal control problem (KL divergence) is quite practical.
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Merci pour votre attention!
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