On the intersection of control and machine learning

Borjan¹ Geshkovski borjang.github.io

IRMA, 29 Novembre, 2022

¹Bor-*Yann*

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Supervised learning

Goal: Approximate an unknown function $f : \mathbb{R}^d \to \mathbb{R}^m$ given data

$$\mathscr{D} := \left\{ x^{(i)}, f(x^{(i)}) \right\}_{i \in [n]} \subset \mathbb{R}^d \times \mathbb{R}^m.$$

Augmented empirical risk minimization

Concluding remarks

Supervised learning

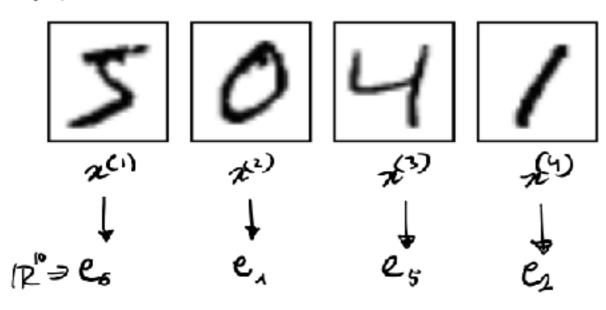
Goal: Approximate an unknown function $f : \mathbb{R}^d \to \mathbb{R}^m$ given data

$$\mathscr{D} := \left\{ x^{(i)}, f(x^{(i)}) \right\}_{i \in [n]} \subset \mathbb{R}^d \times \mathbb{R}^m.$$

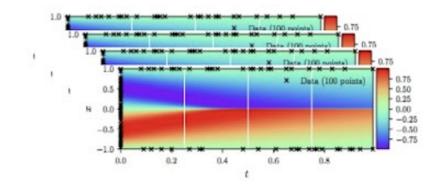
We distinguish:

• Classification: ran(f) is $\{e_j\}_{j\in[m]} \subset \mathbb{R}^m$. Image, audio: $d \ge 10^3$, $d \gg m$.

d=784 m=10



► Regression: ran(f) is ℝ^m.
PDE: fixed initial/boundary data, then learn (t, x) → u(t, x)



Augmented empirical risk minimization

Concluding remarks

(Feed-forward) neural networks

$$\int f_{\text{approx}}(x) := P \mathbf{x}^{[n_T]}(x)$$

for $x \in \mathbb{R}^d$.

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

(Feed-forward) neural networks

$$f_{\text{approx}}(x) := P \mathbf{x}^{[n_T]}(x)$$

for $x \in \mathbb{R}^d$.

where

▶ $P \in \mathbb{R}^{m \times d_{n_T}}$ (suppose given)

Augmented empirical risk minimization

Concluding remarks

(Feed-forward) neural networks

$$f_{\text{approx}}(x) := P \mathbf{x}^{[n_T]}(x)$$

for $x \in \mathbb{R}^d$.

where

P ∈ ℝ^{m×d_{nT}} (suppose given)
 x^[n_T](x) ∈ ℝ^{d_{nT}} is output of neural net with n_T ≥ 1 layers:

$$\begin{cases}
 x^{[k+1]} = c^{[k]} \sigma(a^{[k]} \cdot x^{[k]} + b^{[k]}) & k \in \{0, ..., n_T - 1\} \\
 x^{[0]} = x,
 \end{aligned}$$

state $x^{[k+1]} \in \mathbb{R}^{d_{k+1}}$ and weights $c^{[k]} \in \mathbb{R}^{d_{k+1}}, a^{[k]} \in \mathbb{R}^{d_k}, b^{[k]} \in \mathbb{R}$ $\sigma \in C^{0,1}(\mathbb{R})$, typically $\sigma(x) = (x)_+$ or $\sigma(x) = \tanh(x)$ μ widths d_k given

Concluding remarks

Residual neural networks (ResNets)

Let $d_k = d$ for all k.

Consider

$$\begin{cases} \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} + \Delta t c^{[k]} (a^{[k]} \cdot \mathbf{x}^{[k]} + b^{[k]})_{+} & k \in \{0, \dots, n_T - 1\} \\ \mathbf{x}^{[0]} = x, \end{cases}$$

with
$$c^{[k]}, a^{[k]} \in \mathbb{R}^d$$
 and $b^{[k]} \in \mathbb{R}$.

Deep residual learning for image recognition

<u>K He</u>, <u>X Zhang</u>, <u>S Ren</u>, <u>J Sun</u> - Proceedings of the IEEE ..., 2016 - openaccess.thecvf.com ... as learning **residual** functions with ... **residual** networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate **residual** ... ☆ Save 𝒯 Cite Cited by 142319 Related articles All 72 versions ≫

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Neural ODEs

Natural to consider [E '17]:

$$\begin{cases} \dot{\mathbf{x}}(t) = c(t)(a(t) \cdot \mathbf{x}(t) + b(t))_+ & t \in (0, T), \\ \mathbf{x}(0) = x \end{cases}$$

And now
$$f_{\text{approx}}(x) := P \mathbf{x}(T)$$
.

Useful in practice:

- Beyond Euler schemes [Chen et al. '18]
- Structure preserving schemes [Schönlieb et al. '20, '22]
- Beyond supervised learning (wait until the end of the talk)
- More compact form for analysis

Augmented empirical risk minimization

Concluding remarks

Approximation theory

Before using the data, a "well-posedness" question can be asked.

Problem (Universal approximation)

Given $f \in \mathscr{H}$ and $\epsilon > 0$, find $(a_{\epsilon}, b_{\epsilon}, c_{\epsilon}) \in L^{\infty}((0, T); \mathbb{R}^{2d+1})$ such that

 $\|f_{\operatorname{approx},\epsilon} - f\|_{\mathscr{H}} \leqslant \epsilon$

Augmented empirical risk minimization

Concluding remarks

Approximation theory

Before using the data, a "well-posedness" question can be asked.

Problem (Universal approximation)

Given $f \in \mathscr{H}$ and $\epsilon > 0$, find $(a_{\epsilon}, b_{\epsilon}, c_{\epsilon}) \in L^{\infty}((0, T); \mathbb{R}^{2d+1})$ such that

 $\|f_{\operatorname{approx},\epsilon} - f\|_{\mathscr{H}} \leqslant \epsilon$

- Feed-forward nets: [Cybenko '89], [Barron '93] $(n_T = 1 \text{ and } \mathscr{H} = C^0([0,1]^d))$, Pinkus '99 $(n_T \ge 1)$
- Neural ODEs: [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua '22] (*H* = L²((0,1)^d; R^m)). ResNets are corollary as controls are piecewise constant

Strategies generally non-algorithmic and suffer from curse of dimensionality

Augmented empirical risk minimization

Concluding remarks

Learning is control

\blacktriangleright To learn, we can only use the data \mathscr{D} .

Augmented empirical risk minimization

Concluding remarks

Learning is control

To learn, we can only use the data \mathscr{D} .

So, we consider

Problem

Find controls $(a, b, c) \in L^{\infty}((0, T); \mathbb{R}^{2d+1})$ such that

$$P\mathbf{x}_i(T) = f(x^{(i)}) \qquad \forall i \in [n]$$

where

$$\begin{cases} \dot{\mathbf{x}}_i(t) = c(t)(a(t) \cdot \mathbf{x}_i(t) + b(t))_+ & t \in (0, T), \\ \mathbf{x}_i(0) = x^{(i)}, \end{cases}$$
(1)

and hope predictions of f(x) are good if we take initial data points x outside \mathscr{D} (generalization).

Augmented empirical risk minimization

Concluding remarks

Learning is control

To learn, we can only use the data \mathscr{D} .

So, we consider

Problem

Find controls $(a, b, c) \in L^{\infty}((0, T); \mathbb{R}^{2d+1})$ such that

$$P\mathbf{x}_i(T) = f(x^{(i)}) \qquad \forall i \in [n]$$

where

$$\begin{cases} \dot{\mathbf{x}}_i(t) = c(t)(a(t) \cdot \mathbf{x}_i(t) + b(t))_+ & t \in (0, T), \\ \mathbf{x}_i(0) = x^{(i)}, \end{cases}$$
(1)

and hope predictions of f(x) are good if we take initial data points x outside \mathscr{D} (generalization).

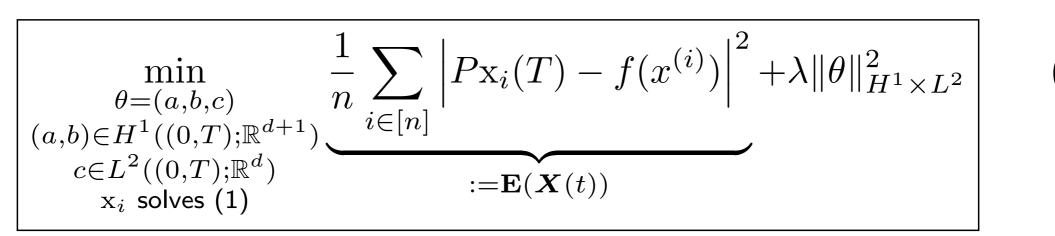
- It's a simultaneous/ensemble control(lability) problem!
- Nonlinear control-state interaction is necessary

Augmented empirical risk minimization

Concluding remarks

What is done in practice

Least squares, with penalty $\lambda > 0$:



(2)

- **Empirical risk minimization:** $\mathbf{E}(\cdot)$ is the empirical risk.
- ► H^1 suffices for compactness if $p \in [1, \infty)$, $\varphi : \mathbb{R} \to \mathbb{R}$ is s.t. $\varphi \circ u_n \rightharpoonup \varphi \circ u^*$ in $L^p(0, 1)$ for any $u_n \rightharpoonup u^*$ in $L^p(0, 1)$, then φ is affine!
- Can go way beyond squared Euclidean distance (even non-distances such as cross-entropy for classification)

Empirical risk minimization is optimal control 00000000

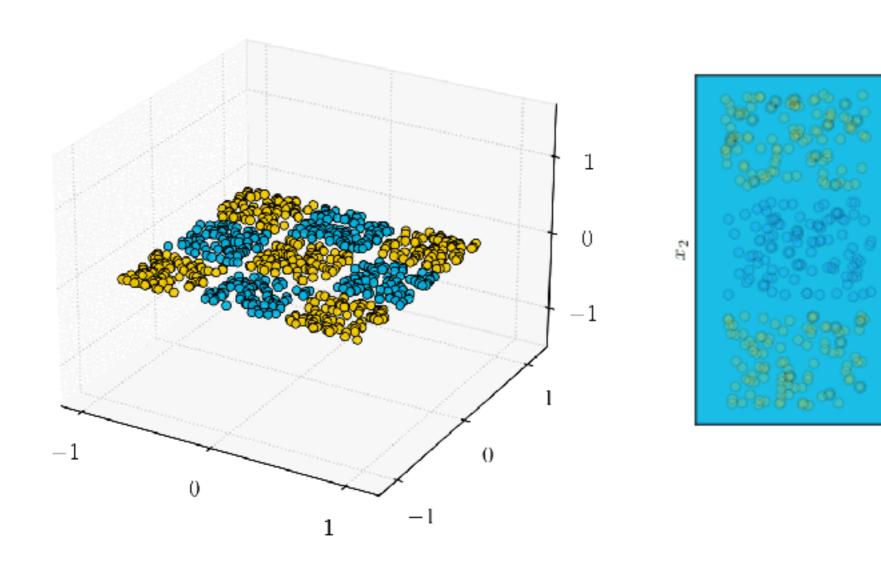
Augmented empirical risk minimization

 x_1

Concluding remarks

github.com/borjanG/dynamical.systems

 $T = 5, n_T = 16, n = 3000, \lambda = 0.01$



Augmented empirical risk minimization

Concluding remarks

Optimal control over long time

ln practice n_T can be large (*deep* learning)

Augmented empirical risk minimization

Concluding remarks

Optimal control over long time

- ln practice n_T can be large (*deep* learning)
- ▶ But $\triangle t = \frac{T}{n_T}$, so n_T large means T large

Augmented empirical risk minimization

Concluding remarks

Optimal control over long time

ln practice n_T can be large (*deep* learning)

▶ But
$$\triangle t = \frac{T}{n_T}$$
, so n_T large means T large

Question

For global minimizer θ_T for (2) and $X_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with unique solutions x_i to (1) as columns, what happens when $T \to \infty$?

Augmented empirical risk minimization

Concluding remarks

Optimal control over long time

- ln practice n_T can be large (*deep* learning)
- But $\triangle t = \frac{T}{n_T}$, so n_T large means T large

Question

For global minimizer θ_T for (2) and $X_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with unique solutions x_i to (1) as columns, what happens when $T \to \infty$?

Definition (Interpolation)

(1) interpolates \mathscr{D} if $\exists \theta \in H^1((0,1); \mathbb{R}^{d+1}) \times L^2((0,1); \mathbb{S}^{d-1})$ such that

$$P\mathbf{x}_i(1) = f(x^{(i)}) \qquad \forall i \in [n]$$

where $x_i \in C^0([0,1]; \mathbb{R}^d)$ solves (1) with control θ . (I.e., $\mathbf{E}(\mathbf{X}(1)) = 0$.)

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22b]

Fix $\lambda > 0$; c in (2) minimized over $L^2((0,T); \mathbb{S}^{d-1})$; (1) interpolates \mathscr{D} . For $T \ge 1$, any global minimizer θ_T for (2) and $X_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with columns solutions to (1) satisfy:

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22b]

Fix $\lambda > 0$; c in (2) minimized over $L^2((0,T); \mathbb{S}^{d-1})$; (1) interpolates \mathscr{D} . For $T \ge 1$, any global minimizer θ_T for (2) and $\mathbf{X}_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with columns solutions to (1) satisfy:

1. $\exists C(\mathscr{D}, \lambda) > 0$,

$$\mathbf{E}(\boldsymbol{X}_T(T)) = \frac{1}{n} \sum_{i \in [n]} \left| P\mathbf{x}_i(T) - f(x^{(i)}) \right|^2 \leq \frac{C}{T}$$

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22b]

Fix $\lambda > 0$; c in (2) minimized over $L^2((0,T); \mathbb{S}^{d-1})$; (1) interpolates \mathscr{D} . For $T \ge 1$, any global minimizer θ_T for (2) and $\mathbf{X}_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with columns solutions to (1) satisfy:

1. $\exists C(\mathscr{D}, \lambda) > 0$,

$$\mathbf{E}(\boldsymbol{X}_T(T)) = \frac{1}{n} \sum_{i \in [n]} \left| P\mathbf{x}_i(T) - f(x^{(i)}) \right|^2 \leq \frac{C}{T}$$

2. $X_{T_k}(T_k) \to X^*$ for some subsequence $T_k > 0$, $T_k \to \infty$ $(k \to \infty)$ and $X^* \in \mathbb{R}^{d \times n}$ with $\mathbf{E}(X^*) = 0$

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22b]

Fix $\lambda > 0$; c in (2) minimized over $L^2((0,T); \mathbb{S}^{d-1})$; (1) interpolates \mathscr{D} . For $T \ge 1$, any global minimizer θ_T for (2) and $\mathbf{X}_T \in C^0([0,T]; \mathbb{R}^{d \times n})$ matrix with columns solutions to (1) satisfy:

1. $\exists C(\mathscr{D}, \lambda) > 0$,

$$\mathbf{E}(\boldsymbol{X}_T(T)) = \frac{1}{n} \sum_{i \in [n]} \left| P\mathbf{x}_i(T) - f(x^{(i)}) \right|^2 \leq \frac{C}{T}$$

- 2. $X_{T_k}(T_k) \to X^*$ for some subsequence $T_k > 0$, $T_k \to \infty$ $(k \to \infty)$ and $X^* \in \mathbb{R}^{d \times n}$ with $\mathbf{E}(X^*) = 0$
- 3. Set $\theta_k(t) := (T_k a_{T_k}(tT_k), T_k b_{T_k}(tT_k), c_{T_k}(tT_k))$ for $t \in [0, 1]$. Then $\theta_k \to \theta^*$ strongly in $H^1 \times L^2$ where θ^* is some solution to

$$\inf_{\substack{\theta = (a,b,c) \\ (a,b) \in H^1((0,1); \mathbb{R}^{d+1}) \\ c \in L^2((0,1); \mathbb{S}^{d-1}) \\ \mathbf{E}(\mathbf{X}(1)) = 0}} \|\theta\|_{H^1 \times L^2}^2$$

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

1.
$$\theta_1 = (a_1, b_1, c_1) \in H^1((0, 1); \mathbb{R}^{d+1}) \times L^2((0, T); \mathbb{S}^{d-1})$$
 yields x_i^1 solution to (1) on $[0, 1]$. Then

$$\theta_T(\cdot) = \left(\frac{1}{T}a_1\left(\frac{\cdot}{T}\right), \frac{1}{T}b_1\left(\frac{\cdot}{T}\right), c_1\left(\frac{\cdot}{T}\right)\right)$$

defined on [0,T], yields solution $\mathbf{x}_i^T(\cdot) \equiv \mathbf{x}_i^1(\frac{\cdot}{T})$ to (1)

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

1.
$$\theta_1 = (a_1, b_1, c_1) \in H^1((0, 1); \mathbb{R}^{d+1}) \times L^2((0, T); \mathbb{S}^{d-1})$$
 yields x_i^1 solution to (1) on $[0, 1]$. Then

$$\theta_T(\cdot) = \left(\frac{1}{T}a_1\left(\frac{\cdot}{T}\right), \frac{1}{T}b_1\left(\frac{\cdot}{T}\right), c_1\left(\frac{\cdot}{T}\right)\right)$$

defined on [0,T], yields solution $\mathbf{x}_i^T(\cdot) \equiv \mathbf{x}_i^1(\frac{\cdot}{T})$ to (1) 2. In turn,

$$\mathbf{E}(\mathbf{X}_T(T)) + \lambda \int_0^T |\theta_T(t)|^2 dt$$

= $\mathbf{E}(\mathbf{X}_1(1)) + \frac{\lambda}{T} \int_0^1 |(a_1(s), b_1(s))|^2 ds + \lambda.$

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

1.
$$\theta_1 = (a_1, b_1, c_1) \in H^1((0, 1); \mathbb{R}^{d+1}) \times L^2((0, T); \mathbb{S}^{d-1})$$
 yields x_i^1 solution to (1) on $[0, 1]$. Then

$$\theta_T(\cdot) = \left(\frac{1}{T}a_1\left(\frac{\cdot}{T}\right), \frac{1}{T}b_1\left(\frac{\cdot}{T}\right), c_1\left(\frac{\cdot}{T}\right)\right)$$

defined on [0,T], yields solution $\mathbf{x}_i^T(\cdot) \equiv \mathbf{x}_i^1(\frac{\cdot}{T})$ to (1) 2. In turn,

$$\begin{split} \mathbf{E}(\boldsymbol{X}_T(T)) &+ \lambda \int_0^T |\theta_T(t)|^2 dt \\ &= \mathbf{E}(\boldsymbol{X}_1(1)) + \frac{\lambda}{T} \int_0^1 |(a_1(s), b_1(s))|^2 ds + \lambda. \end{split}$$

3. Take interpolation control (on (0,1)), stretch it out to (0,T), and compare with θ_T .

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

1.
$$\theta_1 = (a_1, b_1, c_1) \in H^1((0, 1); \mathbb{R}^{d+1}) \times L^2((0, T); \mathbb{S}^{d-1})$$
 yields x_i^1 solution to (1) on $[0, 1]$. Then

$$\theta_T(\cdot) = \left(\frac{1}{T}a_1\left(\frac{\cdot}{T}\right), \frac{1}{T}b_1\left(\frac{\cdot}{T}\right), c_1\left(\frac{\cdot}{T}\right)\right)$$

defined on [0,T], yields solution $\mathbf{x}_i^T(\cdot) \equiv \mathbf{x}_i^1(\frac{\cdot}{T})$ to (1) 2. In turn,

$$\mathbf{E}(\boldsymbol{X}_T(T)) + \lambda \int_0^T |\theta_T(t)|^2 dt$$

= $\mathbf{E}(\boldsymbol{X}_1(1)) + \frac{\lambda}{T} \int_0^1 |(a_1(s), b_1(s))|^2 ds + \lambda.$

3. Take interpolation control (on (0,1)), stretch it out to (0,T), and compare with θ_T .

Corollary

In this setting, $T \to \infty$ is equivalent to $\lambda \to 0$.

Augmented empirical risk minimization

Interpolation, Controllability

- 1. Combinatorics. For (1): [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua '22]. Distinct targets if d = m.
- 2. Lie algebra. For

$$\dot{\mathbf{x}}_i(t) = \theta(t)\sigma(\mathbf{x}_i(t)),\tag{3}$$

with $\sigma \in C^{0,1} \cap C^1(\mathbb{R})$ element-wise: [Agrachev, Sarychev '22]

Augmented empirical risk minimization

Interpolation, Controllability

- 1. Combinatorics. For (1): [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua '22]. Distinct targets if d = m.
- 2. Lie algebra. For

$$\dot{\mathbf{x}}_i(t) = \theta(t)\sigma(\mathbf{x}_i(t)), \tag{3}$$

with $\sigma \in C^{0,1} \cap C^1(\mathbb{R})$ element-wise: [Agrachev, Sarychev '22]

A digression - little homotopy method inspired by [Coron-Trélat '04]:

Proposition [Esteve-Yagüe, G., Pighin, Zuazua '22b]

Suppose $d \ge n$. Fix $X^1 \in \mathbb{R}^{d \times n}$ with

span{
$$\sigma(\mathbf{x}_1^1), \ldots, \sigma(\mathbf{x}_n^1)$$
} = \mathbb{R}^d

Then $\exists r, C > 0$ such that $\forall X^0 \in B_r(X^1)$, $\exists \theta \in L^{\infty}((0, 1); \mathbb{R}^{d \times d})$ for which the solutions x_i to (3) with $x_i(0) = x_i^0$ satisfy $x_i(1) = x_i^1 \ \forall i \in [n]$. Moreover

$$\|\theta\|_{L^{\infty}} \leqslant \frac{C}{T} |\mathbf{X}^1 - \mathbf{X}^0|.$$

Empirical risk minimization is optimal control

Augmented empirical risk minimization

Concluding remarks

Generalization: a statistical approach Focus on dynamics (3).

Augmented empirical risk minimization

Concluding remarks

Generalization: a statistical approach Focus on dynamics (3).

► Look at $\{x^{(i)}, y^{(i)}\}_{i \in [n]} \subset \mathbb{R}^d \times \mathbb{R}^m$ as i.i.d. samples from unknown joint law $\mu \in \mathcal{P}_c(\mathbb{R}^d \times \mathbb{R}^m)$. Then $f(x) := \mathbb{E}(y|x)$ which minimizes $\mathbb{E}_{(x,y)\sim\mu}|f(x) - y|^2$ over all functions f.

Augmented empirical risk minimization

Concluding remarks

Generalization: a statistical approach Focus on dynamics (3).

- Look at $\{x^{(i)}, y^{(i)}\}_{i \in [n]} \subset \mathbb{R}^d \times \mathbb{R}^m$ as i.i.d. samples from unknown joint law $\mu \in \mathcal{P}_c(\mathbb{R}^d \times \mathbb{R}^m)$. Then $f(x) := \mathbb{E}(y|x)$ which minimizes $\mathbb{E}_{(x,y)\sim\mu}|f(x) y|^2$ over all functions f.
- Associated to (2): population risk minimization

$$\min_{\substack{\theta \in L^2((0,T); \mathbb{R}^{d \times d}) \\ \mathbf{x}^{\theta} \text{ solves (3)} \\ \mathbf{x}^{\theta}(0) = x}} \mathbb{E}_{(x,y) \sim \mu} |P \mathbf{x}^{\theta}(T) - y|^2 + \lambda \int_0^T |\theta(t)|^2 dt$$
(4)

Augmented empirical risk minimization

Concluding remarks

Generalization: a statistical approach Focus on dynamics (3).

- Look at $\{x^{(i)}, y^{(i)}\}_{i \in [n]} \subset \mathbb{R}^d \times \mathbb{R}^m$ as i.i.d. samples from unknown joint law $\mu \in \mathcal{P}_c(\mathbb{R}^d \times \mathbb{R}^m)$. Then $f(x) := \mathbb{E}(y|x)$ which minimizes $\mathbb{E}_{(x,y)\sim\mu}|f(x) y|^2$ over all functions f.
- Associated to (2): population risk minimization

$$\min_{\substack{\theta \in L^2((0,T); \mathbb{R}^{d \times d}) \\ x^{\theta} \text{ solves (3)} \\ x^{\theta}(0) = x}} \mathbb{E}_{(x,y) \sim \mu} |Px^{\theta}(T) - y|^2 + \lambda \int_0^T |\theta(t)|^2 dt$$
(4)

• Generalization: θ_n minimizer of J_n in (2), and θ^* of J in (4), then $\exists \alpha > 0$:

$$\mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta_n}(T) - y|^2 - \mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta^*}(T) - y|^2 = \mathcal{O}\left(\frac{1}{n^{\alpha}}\right)$$

Concluding remarks

What is known

- 1. [E, Han, Li '19]:
 - Pontryagin Maximum Principle for both (2) and (4);
 - ► Hamiltonian $\theta \mapsto H(x, p, \theta) = p \cdot \theta \sigma(x) + \lambda |\theta|^2$ strongly concave for any (x, p)
 - given θ^{*}, with high probability ∃θ_n critical point of Hamiltonian for
 (2) such that

$$\mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta_n}(T) - y|^2 - \mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta^*}(T) - y|^2 \leq \frac{C(d)}{n^{\frac{1}{2}-\epsilon}}$$

with high probability, for any $\epsilon > 0$.

Ensuring that θ_n is global minimizer: true when $T \ll 1$, so $\lambda \gg 1!$

Concluding remarks

What is known

- 1. [E, Han, Li '19]:
 - Pontryagin Maximum Principle for both (2) and (4);
 - Hamiltonian $\theta \mapsto H(x, p, \theta) = p \cdot \theta \sigma(x) + \lambda |\theta|^2$ strongly concave for any (x, p)
 - given θ^{*}, with high probability ∃θ_n critical point of Hamiltonian for
 (2) such that

$$\mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta_n}(T) - y|^2 - \mathbb{E}_{(x,y)\sim\mu} |P\mathbf{x}^{\theta^*}(T) - y|^2 \leq \frac{C(d)}{n^{\frac{1}{2}-\epsilon}}$$

with high probability, for any $\epsilon > 0$.

Ensuring that θ_n is global minimizer: true when $T \ll 1$, so $\lambda \gg 1!$

- 2. [Bonnet et al. '22]:
 - For $\lambda \gg 1$, J_n strongly convex on any L^2 ball
 - Mean-field PMP ... rate $\mathcal{O}\left(\frac{1}{n^{\frac{1}{d}}}\right)$

Augmented empirical risk minimization

Concluding remarks

An observation with C. Letrouit and P. Rigollet

1. Strong convexity on any $B \subset L^2((0,T); \mathbb{R}^{d \times d})$

$$\|\theta_1 - \theta_2\|_{L^2}^2 \lesssim |\nabla J_n(\theta_1) - \nabla J_n(\theta_2)|, \qquad \forall \theta_1, \theta_2 \in B.$$

Augmented empirical risk minimization

Concluding remarks

An observation with C. Letrouit and P. Rigollet 1. Strong convexity on any $B \subset L^2((0,T); \mathbb{R}^{d \times d})$

$$\|\theta_1 - \theta_2\|_{L^2}^2 \lesssim |\nabla J_n(\theta_1) - \nabla J_n(\theta_2)|, \qquad \forall \theta_1, \theta_2 \in B.$$

$$\begin{aligned} \|\theta_n - \theta^*\|_{L^2}^2 &\lesssim |\nabla J_n(\theta_n) - \nabla J_n(\theta^*)| \\ &= |\nabla J(\theta^*) - \nabla J_n(\theta^*)| \\ &= \left| \mathbb{E}_{(x,y)\sim\mu} \nabla_\theta \ell(\mathbf{x}^{\theta^*}(T), y) - \frac{1}{n} \sum_{i \in [n]} \nabla_\theta \ell(\mathbf{x}_i^{\theta^*}(T), y^{(i)}) \right. \end{aligned}$$

Augmented empirical risk minimization

Concluding remarks

An observation with C. Letrouit and P. Rigollet

1. Strong convexity on any $B \subset L^2((0,T); \mathbb{R}^{d \times d})$

$$\|\theta_1 - \theta_2\|_{L^2}^2 \lesssim |\nabla J_n(\theta_1) - \nabla J_n(\theta_2)|, \qquad \forall \theta_1, \theta_2 \in B.$$

$$\begin{aligned} \|\theta_n - \theta^*\|_{L^2}^2 &\lesssim |\nabla J_n(\theta_n) - \nabla J_n(\theta^*)| \\ &= |\nabla J(\theta^*) - \nabla J_n(\theta^*)| \\ &= \left| \mathbb{E}_{(x,y)\sim\mu} \nabla_\theta \ell(\mathbf{x}^{\theta^*}(T), y) - \frac{1}{n} \sum_{i \in [n]} \nabla_\theta \ell(\mathbf{x}_i^{\theta^*}(T), y^{(i)}) \right| \end{aligned}$$

3. θ^* is fixed, not random. Sum of bounded, independent random variables, compared with expectation \Rightarrow concentration of measure (Hoeffding inequality): $\forall \delta > 0$, $\exists \kappa > 0$ such that $\forall n \ge 1$,

$$\mathbb{P}(\|\theta_n - \theta^*\|_{L^2}^2 \leq \kappa/\sqrt{n}) \ge 1 - \delta.$$

Bound $J(\theta_n) - J(\theta^*)$ from above and get $\mathcal{O}(\frac{1}{\sqrt{n}})$ rate.

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Improving
$$1/T$$

We consider

$$\left| \inf_{\substack{c \in L^2((0,T); \mathbb{R}^d) \\ \mathbf{x}_i(\cdot) \text{ solves (1)}}} \int_0^T \frac{1}{n} \sum_{i \in [n]} \left| P \mathbf{x}_i(t) - f(x^{(i)}) \right|^2 dt + \int_0^T |c(t)|^2 dt \right|$$
(5)

Controls $a \in L^{\infty}(\mathbb{R}_+; \mathbb{R}^d)$ and $b \in L^{\infty}(\mathbb{R}_+)$ assumed fixed in (1) (need L^2 -penalties and compactness simultaneously)

Can also consider dynamics as (3), or (a, b) can be optimized over \mathbb{S}^d .

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Two assumptions

Recall, for
$$\boldsymbol{X} = [\mathrm{x}_1 \cdots \mathrm{x}_n] \in \mathbb{R}^{d \times n}$$
:

$$\mathbf{E}(\mathbf{X}) := \frac{1}{n} \sum_{i \in [n]} \left| P \mathbf{x}_i - f(x^{(i)}) \right|^2$$

Assumption 1.

Set $\mathcal{Z} := \{ \mathbf{Z} \in \mathbb{R}^{d \times n} : \mathbf{E}(\mathbf{Z}) = 0 \}$. Then $P \in \mathbb{R}^{m \times d}$ is such that

$$\kappa_1 \operatorname{dist}(\boldsymbol{X}, \mathcal{Z})^2 \leqslant \mathbf{E}(\boldsymbol{X}) \leqslant \kappa_2 \operatorname{dist}(\boldsymbol{X}, \mathcal{Z})^2$$

for some $\kappa_2 \ge \kappa_1 > 0$, and $\forall X \in \mathbb{R}^{d \times n}$.

Lower bound: global Lojasiewicz inequality for analytic functions

Augmented empirical risk minimization

Concluding remarks

Assumption 2.

Fix $X^0 = [x_1^0 \cdots x_n^0] \in \mathbb{R}^{d \times n}$. We assume $\exists c \in L^2((0,1); \mathbb{R}^d)$ such that the matrix $X \in C^0([0,1]; \mathbb{R}^{d \times n})$ with columns $x_i(\cdot)$ solutions to (1) with $x_i(0) = x_i^0$, satisfies $X(1) \in \mathcal{Z}$.

Moreover, $\exists C(n) > 0$,

$$\int_0^1 |c(t)|^2 dt \leqslant C(n) \operatorname{dist}(\boldsymbol{X}^0, \boldsymbol{\mathcal{Z}})^2.$$

Augmented empirical risk minimization

Concluding remarks

Assumption 2.

Fix $X^0 = [x_1^0 \cdots x_n^0] \in \mathbb{R}^{d \times n}$. We assume $\exists c \in L^2((0,1); \mathbb{R}^d)$ such that the matrix $X \in C^0([0,1]; \mathbb{R}^{d \times n})$ with columns $x_i(\cdot)$ solutions to (1) with $x_i(0) = x_i^0$, satisfies $X(1) \in \mathcal{Z}$.

Moreover, $\exists C(n) > 0$,

$$\int_0^1 |c(t)|^2 dt \leqslant C(n) \operatorname{dist}(\boldsymbol{X}^0, \boldsymbol{\mathcal{Z}})^2.$$

• When d > m, then $P \in \mathbb{R}^{d \times n}$ is generically surjective and

$$\mathcal{Z} = \left\{ \left[\mathbf{z}_1 \cdots \mathbf{z}_n \right] \in \mathbb{R}^{d \times n} \colon \mathbf{z}_i \in P^{-1} \left\{ f(x^{(i)}) \right\} \right\}$$

So $x_i(1) \in P^{-1}\left\{f(x^{(i)})\right\}$ for all $i \in [n]$ and

$$\int_{0}^{1} |c(t)|^{2} dt \leq C(n) \inf_{\substack{[z_{1}\cdots z_{n}]\in\mathbb{R}^{d\times n}\\z_{i}\in P^{-1}\{f(x^{(i)})\}}} \sum_{i\in[n]} |\mathbf{x}_{i}^{0}-z_{i}|^{2}.$$

Augmented empirical risk minimization

Concluding remarks

Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22a]

Suppose m = d and P = Id. Then $\exists T_*, \omega > 0, C \ge 1$ such that for $T \ge T_*$, any global minimizer $c_T \in L^2((0,T); \mathbb{R}^d)$ to (5) and x_i^T solution to (1) satisfy

$$\sum_{i \in [n]} \left| \mathbf{x}_i^T(t) - f(x^{(i)}) \right|^2 + |c_T(t)|^2 \leq \left(C \sum_{i \in [n]} \left| x^{(i)} - f(x^{(i)}) \right|^2 \right) e^{-\omega t}$$

 $\forall t \in [0, T].$

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

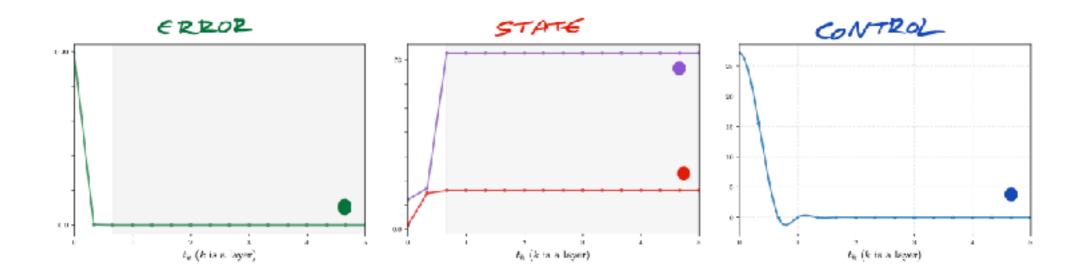
Theorem [Esteve-Yagüe, G., Pighin, Zuazua, '22b]

Replace $(\cdot)_+$ by $\sigma \in L^{\infty}(\mathbb{R})$ in (1) and let d > m. Then $\exists T_*, \omega > 0$, $C \ge 1$ such that for $T \ge T_*$, any global minimizer $c_T \in L^2((0,T); \mathbb{R}^d)$ to (5) and \mathbf{x}_i^T solution to (1) satisfy

$$\sum_{i \in [n]} \left| P \mathbf{x}_{i}^{T}(t) - f(x^{(i)}) \right|^{2} + \inf_{\substack{[\mathbf{z}_{1} \cdots \mathbf{z}_{n}] \in \mathbb{R}^{d \times n} \\ \mathbf{z}_{i} \in P^{-1}\{f(x^{(i)})\}}} \sum_{i \in [n]} \left| \mathbf{x}_{i}^{T}(t) - \mathbf{z}_{i} \right|^{2} + |c_{T}(t)|^{2}$$

$$\leq \left(C \inf_{\substack{[\mathbf{z}_{1} \cdots \mathbf{z}_{n}] \in \mathbb{R}^{d \times n} \\ \mathbf{z}_{i} \in P^{-1}\{f(x^{(i)})\}}} \sum_{i \in [n]} \left| x^{(i)} - \mathbf{z}_{i} \right|^{2} \right) e^{-\omega t}$$

 $\forall t \in [0, T].$

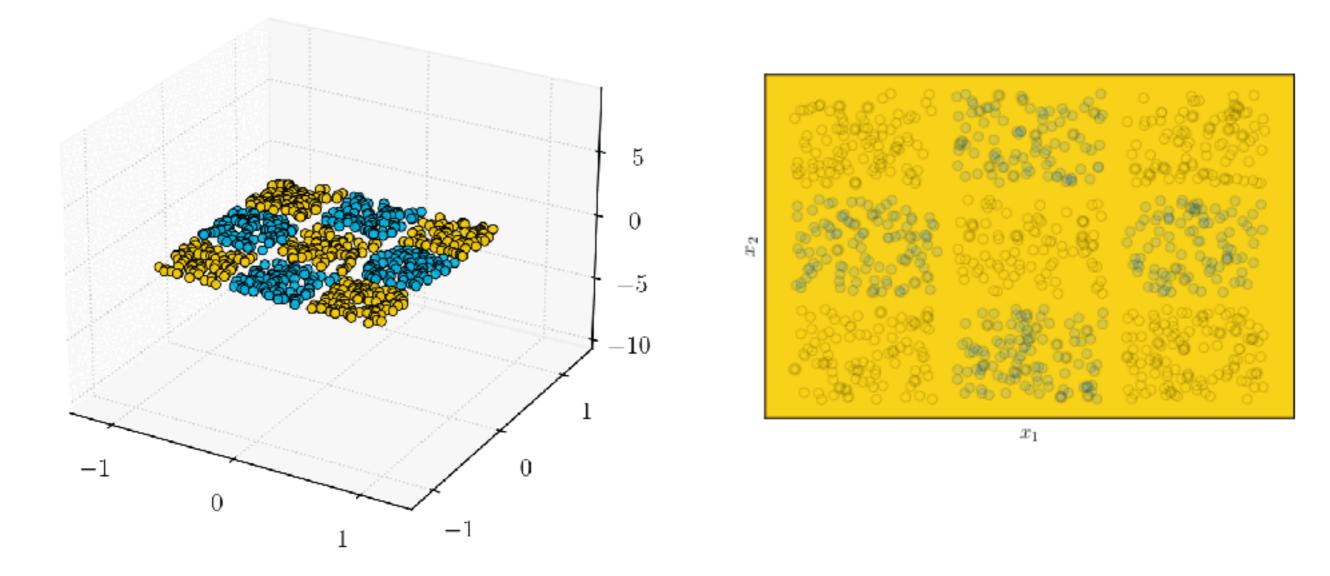


Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

It's faster



Takeaway: when possible, proceed in *model predictive control manner:* start with small T, evaluate error, and proceed by increasing T adaptively.

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Important tool

Focus on d = m, P = Id.

Lemma

 $\exists C_1 > 0$ independent of T, $\forall c \in L^2$ and x_i solution to (1):

$$\sup_{t \in [0,T]} \sum_{i \in [n]} \left| \mathbf{x}_i(t) - f(x^{(i)}) \right|^2 \leq C_1 \left(\sum_{i \in [n]} \left| x^{(i)} - f(x^{(i)}) \right|^2 + \int_0^T \sum_{i \in [n]} \left| \mathbf{x}_i(t) - f(x^{(i)}) \right|^2 dt + \int_0^T |c(t)|^2 dt$$

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Ingredients

1. $c_{aux}(t) := c_1(t) \mathbb{1}_{[0,1]}(t)$, where c_1 ensures controllability. As c_T is optimal and c_{aux} is not, $\exists C_2 > 0$ independent of T:

$$\int_0^T \sum_{i \in [n]} \left| \mathbf{x}_i^T(t) - f(x^{(i)}) \right|^2 dt + \int_0^T |c_T(t)|^2 dt \leq C_2 \sum_{i \in [n]} \left| x^{(i)} - f(x^{(i)}) \right|^2$$

Lemma yields pointwise bound uniform in T.

2. Shrink time-intervals:

Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

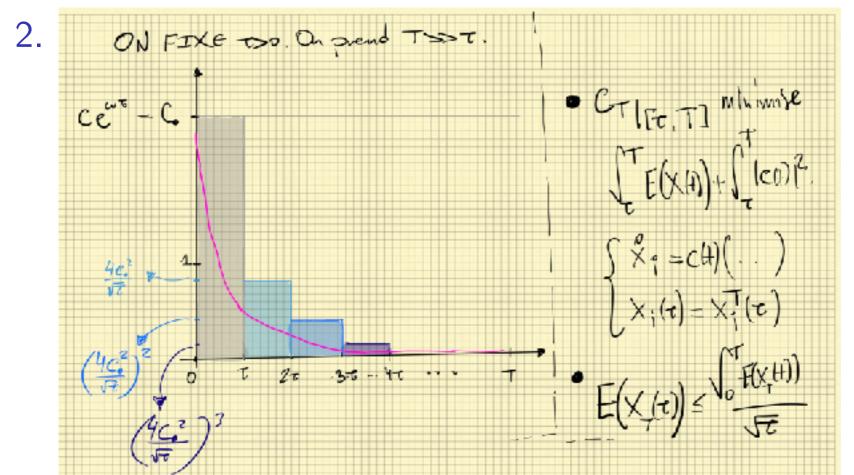
Concluding remarks

Ingredients

1. $c_{aux}(t) := c_1(t) \mathbb{1}_{[0,1]}(t)$, where c_1 ensures controllability. As c_T is optimal and c_{aux} is not, $\exists C_2 > 0$ independent of T:

$$\int_0^T \sum_{i \in [n]} \left| \mathbf{x}_i^T(t) - f(x^{(i)}) \right|^2 dt + \int_0^T |c_T(t)|^2 dt \leq C_2 \sum_{i \in [n]} \left| x^{(i)} - f(x^{(i)}) \right|^2$$

Lemma yields pointwise bound uniform in T.



Augmented empirical risk minimization

Concluding remarks

Extensions

- Using this method, we can't have exponential decay with BV-penalty for (a, b) as norm tracks singularities unlike L². We can at most get decay of time-averages of the error and controls.
- Results are more general. Per [Esteve-Yagüe, G., Pighin, Zuazua '22a; G., Zuazua '22]: controllable PDE

$$y_t(t,x) - Ay(t,x) + Bu(t,x) = f(y(t,x))$$

with Lipschitz (possibly non-smooth) nonlinearity f and cost

$$\phi(y(T)) + \int_0^T |y(t) - \bar{y}|_{\mathscr{H}}^2 dt + \int_0^T |u(t)|_{\mathscr{U}}^2 dt$$

where \bar{y} is any steady state \Rightarrow exponential turnpike without smoothness or smallness assumptions!

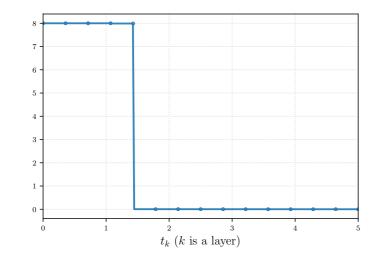
Empirical risk minimization is optimal control 00000000

Augmented empirical risk minimization

Concluding remarks

Further comments

1. $L^1(0,T)$ -penalties for (3) [Esteve-Yagüe, G. '22]:

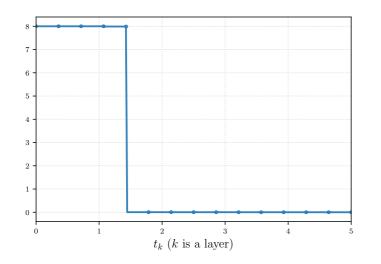


Augmented empirical risk minimization

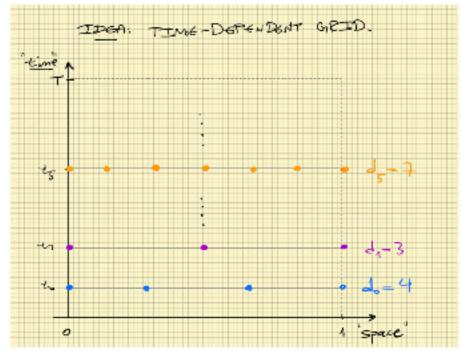
Concluding remarks

Further comments

1. $L^1(0,T)$ -penalties for (3) [Esteve-Yagüe, G. '22]:



2. Variable-width ResNets:



$$\mathbf{x}^{[k+1]} = \Pi^{[k]} \mathbf{x}^{[k]} + c^{[k]} \sigma(a^{[k]} \mathbf{x}^{[k]})$$

where $\Pi^{[k]}: \mathbb{R}^{d_k} \to \mathbb{R}^{d_{k+1}}$, $a^{[k]} \in \mathbb{R}^{d_{k+1} \times d_k}$, $c^{[k]} \in \mathbb{R}^{d_{k+1} \times d_{k+1}}$. So,

$$\partial_t \mathbf{x}(t,z) = \int_0^1 c(t,z,\zeta) \sigma(a(t,z,\zeta)\mathbf{x}(t,\zeta)) d\zeta \qquad (0,T) \times (0,1)$$

Helpful for structured controls (convolutional neural networks).

Concluding remarks ●O

Outlook

- 1. Control
 - Exponential decay/turnpike with BV-penalty for (a, b)?
 - Using control: are feedback controls for $n \gg 1$ trajectories possible, useful?
 - Extrapolating to control: can we get robustness using the lens of many data and statistics?
- 2. Unsupervised learning/generative modeling with normalizing flows (E. Vanden-Eijnden et al.).
 - NF: diffeomorphism $\mathfrak{T} : \mathbb{R}^d \to \mathbb{R}^d$ optimized to transport $\{z^{(i)}\}_{i \in [n]} \subset \mathbb{R}^d$ samples from a known law ρ_0 (Gaussian with unit variance) to unknown target law ρ_1 of which we know samples $\{x^{(i)}\}_{i \in [n]} \subset \mathbb{R}^d$.
 - Parametrizing I by the flow of a neural ODE, and then solving an optimal control problem (KL divergence) is quite practical.

Augmented empirical risk minimization

Concluding remarks

Merci pour votre attention!

Bibliographie:

- 1. [Esteve-Yagüe, G., Pighin, Zuazua '22a]:
 https://arxiv.org/abs/2011.11091, Nonlinearity
- 2. [Esteve-Yagüe, G., Pighin, Zuazua '22b]: https://arxiv.org/abs/2008.02491
- 3. [G., Zuazua '22]:
 https://arxiv.org/abs/2202.04097, Acta Numerica
- 4. [Esteve-Yagüe, G. '22]:
 https://arxiv.org/abs/2102.13566, submitted