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Supervised learning

Goal: Approximate an unknown function f : RY — R™ given data

D = {a?(i),f(:p(i))} C RY x R™.

1€ [n]
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Supervised learning

Goal: Approximate an unknown function f : RY — R™ given data

D = {x(i),f(m(i))} C RY x R™.

1€ [n]

We distinguish:

» Classification: ran(f) is > Regression: ran(f) is R™.
t€stjepm  R™. 3 PDE: fixed initial /boundary
Image, audio: d > 10°, d > m. data, then learn (¢,x) — u(t,x)

d=&
v = D
&N 2+ 763) 79‘)
N
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(Feed-forward) neural networks

fapprox(x) L= PX[nT](CE) for z € RY.
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(Feed-forward) neural networks

fapprox(w) L= PX[nT](«T) for x € RY.

where

> P c R™X4nr (suppose given)
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(Feed-forward) neural networks

fapprox(x) L= PX[nT](CU) for z € RY.

where
> P c R™X4nr (suppose given)

> x"7l(z) € R is output of neural net with ny > 1 layers:

(xlb+1] = cMlg(al®l . xIF 4l ke {0,...,np — 1}
0]

xl0 = gz,

\

state xFT1l € R9%+1 and weights cl¥! € R+ glFl ¢ Rix plFl c R
> o c CY(R), typically o(x) = (x)4 or o(x) = tanh(z)
» widths dj, given
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Residual neural networks (ResNets)

Let di. = d for all k.

Consider

xlk+1] = k] 4 Al (¥ xFl Ll ke fo,... ,np —1}

with ¢l*l ¥l € R4 and bl¥ € R.

Deep residual learning for image recognition
K He, X Zhang, S Ren, J Sun - Proceedings of the IEEE ..., 2016 - openaccess.thecvf.com

... as learning residual functions with ... residual networks are easier to optimize, and can gain
accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual ...

3¢ Save P9 Cite @by 142319 Related articles All 72 versions 99
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Neural ODEs

Natural to consider [E '17]:

And now fopprox(x) := Px(T).

Useful in practice:
» Beyond Euler schemes [Chen et al. '18]
» Structure preserving schemes [Schonlieb et al. '20, '22]
» Beyond supervised learning (wait until the end of the talk)

» More compact form for analysis
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Approximation theory

Before using the data, a "well-posedness’ question can be asked.

Problem (Universal approximation)
Given f € 7 and € > 0, find (a.,b.,c.) € L>=((0,T); R?%*1) such that

Hfapprox,e - fH% S €

5/27
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Approximation theory

Before using the data, a "well-posedness” question can be asked.

Given f € 7 and € > 0, find (a.,b.,c.) € L>=((0,T); R?%*1) such that
Hfapprox,e — fH% < €

» Feed-forward nets: [Cybenko "89], [Barron '93] (n = 1 and
= C°([0,1]%)), Pinkus '99 (nr > 1)

» Neural ODEs: [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua '22]
(5 = L?*((0,1)4;R™)). ResNets are corollary as controls are
plecewise constant

» Strategies generally non-algorithmic and suffer from curse of
dimensionality
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Learning iIs control

» To learn, we can only use the data ¥.
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Learning is control

» To learn, we can only use the data Z.

» So, we consider

Find controls (a,b,c) € L*>((0,T); R?4+1) such that
Px;(T) = f(z) Vi € [n]

where )

Xi(t) = c(t)(a(t) - xi(t) + b(t))+ t€(0,T),

%(0) = 2, (1)

and hope predictions of f(x) are good if we take initial data points x
outside & (generalization).
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Learning i1s control

» To learn, we can only use the data ¥.

» So, we consider

Find controls (a,b,c) € L>®((0,T); R?%+1) such that
Px;(T) = f(z?) Vi € [n]

where

(

Xi(t) = c(t)(a(t) - xi(t) + b(t))+ t€(0,T),

xi(0) = 20, (1)

and hope predictions of f(x) are good if we take initial data points x
outside & (generalization).

» |t's a simultaneous/ensemble control(lability) problem!
» Nonlinear control-state interaction is necessary

6/ 27
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What is done In practice

Least squares, with penalty A > 0:

: 1 4112
Jmin =S P(T) = )| A0 | (2)
(ab)eH (0, T)R+1) €M) )
2 mod -~
CEXI; s(él?/éf)(,llR; ) =E(X (1))

» Empirical risk minimization: E(-) is the empirical risk.

> H! suffices for compactness — if p € [1,00), ¢ : R — R is s.t.
Y o U, — pou*in LP(0,1) for any u,, — u* in LP(0,1), then ¢ is
affine!

» Can go way beyond squared Euclidean distance (even non-distances
such as cross-entropy for classification)
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github.com/borjanG/dynamical.systems

T = 5,np = 16,n = 3000, A = 0.01
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Optimal control over long time

» In practice np can be large (deep learning)
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Optimal control over long time

» In practice np can be large (deep learning)

» But A\t = % so nr large means 1" large
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Optimal control over long time

» In practice nT can be large (deep learning)

» But At = ~—, so np large means T’ large

For global minimizer 01 for (2) and X7 € C°([0, T]; RY*™) matrix with
unique solutions x; to (1) as columns, what happens when 7" — c0?
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Optimal control over long time

» |In practice nT can be large (deep learning)

» But At = ~—, so np large means T’ large

For global minimizer 01 for (2) and X7 € C°([0, T]; RY*™) matrix with
unique solutions x; to (1) as columns, what happens when 7" — c0?

Definition (Interpolation)
(1) interpolates & if 30 ¢ H*((0,1); R4T1) x L2((0,1);S?1) such that

Px;(1) = f(z) Vi € [n]

where x; € CY(]0, 1]; R?) solves (1) with control . (l.e., E(X (1)) =0.)
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Theorem [Esteve-Yagile, G., Pighin, Zuazua, '22b]

Fix A\ > 0; c in (2) minimized over L2((0,7);S%1); (1) interpolates Z.
For T' > 1, any global minimizer §7 for (2) and X7 € C°([0, T]; R%*")
matrix with columns solutions to (1) satisfy:
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Theorem [Esteve-Yagile, G., Pighin, Zuazua, '22b]

Fix A\ > 0; c in (2) minimized over L2((0,7);S%1); (1) interpolates Z.
For T' > 1, any global minimizer §7 for (2) and X7 € C°([0, T]; R%*")
matrix with columns solutions to (1) satisfy:

1. 3C(Z,\) >0

B(Xr(T) =~ 3 |Pxi(@) - 1)
1€ [n]

S| Q

10/27
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Fix A\ > 0; c in (2) minimized over L?((0,7);S%1!); (1) interpolates Z.

For T' > 1, any global minimizer 87 for (2) and X7 € CY([0, T]; R4*"™)
matrix with columns solutions to (1) satisfy:

1. 3C(Z,\) >0

E(X Z ‘sz £

z€57z

’ﬂIQ

2. X1, (T) — X™ for some subsequence T}, > 0, T, — oo (k — o0)
and X* € RY"™ with E(X™) =0
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Empirical risk minimization is optimal control
O00@e00000

Fix A\ > 0; c in (2) minimized over L?((0,7);S%1!); (1) interpolates Z.
For T > 1, any global minimizer 87 for (2) and X+ € C°([0, T]; R4x")
matrix with columns solutions to (1) satisfy:

1. 3C(Z,\) >0

E(X Z ‘sz £

an

’ﬂIQ

2. X1, (T) — X™ for some subsequence T}, > 0, T, — oo (k — o0)
and X* € RY"™ with E(X™) =0

3. Set Hk(t) = (TkaTk (tTk)kaka (tTk), CTy, (tTk)) for t € [O, 1]. Then
0, — 0* strongly in H! x L? where 6* is some solution to

inf tIE:
gt | 101151« 12

(a,b)eH'((0,1);R4T1)
ceL?((0,1);8471)
E(X(1))=0

10 /27
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1. 91 — (al,bl,cl) ~ Hl(((), 1);Rd+1) X Lz((O,T);Sd_l) yields X%
solution to (1) on [0,1]. Then

010 = (701 () 70 (7) (7))

defined on [0, T7, yields solution x; (-) = x; () to (1)

1

~
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1. 91 — (al,bl,cl) ~ Hl(((), 1);Rd+1) X LQ((O,T);Sd_l) yields X%
solution to (1) on [0,1]. Then

010 = (701 () 70 (7) (7))

defined on [0, T7, yields solution x; (-) = x; () to (1)

1 1

2. In turn,
E(X 1 (T)) + )\/T \HT(t)lzdt

— E(Xl(l)) -+ % /O ‘(Cbl (S), bl (S))’st + A.
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1. 91 — (al,bl,cl) ~ Hl(((), 1);Rd+1) X LQ((O,T);Sd_l) yields X%
solution to (1) on [0,1]. Then

010 = (7 (7) 70 (7)1 (7))

defined on [0, T7, yields solution x; (-) = x; () to (1)

1 1

2. In turn,
E(X 1 (T)) + )\/T \HT(t)lzdt

— E(Xl(l)) -+ % /O ‘(Cbl (S), bl (S))’st + A.

3. Take interpolation control (on (0, 1)), stretch it out to (0,7"), and
compare with 0.
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(91 = (al, bl,Cl) S Hl(((), 1);Rd+1) X LZ((O,T);Sd_l) yields X;-[
solution to (1) on [0,1]. Then

010 = (7 (7) 70 (7)1 (7))

defined on [0, T7, yields solution x; (-) = x; () to (1)

. In turn,

E(X7(T)) + )\/T \HT(t)|2dt

~ B(X,(1) + > / (a1 (s), b () *ds + A

. Take interpolation control (on (0, 1)), stretch it out to (0,7), and

compare with 0.

Corollary

In this setting, T' — oo Is equivalent to A — 0.
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Interpolation, Controllability

1. Combinatorics. For (1): [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua
'22]. Distinct targets if d = m.

2. Lie algebra. For
%i(t) = 0(t)o(xi(t)), (3)

with 0 € C%1 N CY(R) element-wise: [Agrachev, Sarychev '22]
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Interpolation, Controllability

1. Combinatorics. For (1): [Li, Lin, Shen '22], [Ruiz-Balet, Zuazua
'22]. Distinct targets if d = m.

2. Lie algebra. For
%i(t) = 0(t)o(xi(1)), (3)
with o € C%1 N CY(R) element-wise: [Agrachev, Sarychev '22]
A digression - little homotopy method inspired by [Coron-Trélat '04]:

Suppose d > n. Fix X! € R4X™ with
span{o(x}),...,0(x;)} = R

Then 3r,C > 0 such that VX" € B,.(X"), 30 € L>((0,1); R4*) for
which the solutions x; to (3) with x;(0) = x? satisfy x;(1) = x} Vi € [n].
Moroever o

6]~ < ZIX" - X°|.
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Generalization: a statistical approach
Focus on dynamics (3).
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Generalization: a statistical approach
Focus on dynamics (3).

» ook at {x(i),y(i)}ie[n] C R? x R™ as i.i.d. samples from unknown
joint law p € P.(R? x R™). Then f(z) := E(y|x) which minimizes
E(2.)~pulf(x) — y|* over all functions f.

13 /27



Supervised learning Empirical risk minimization is optimal control Augmented empirical risk minimization Concluding remarks
O00000 O00000e00 0000000000 OO

Generalization: a statistical approach
Focus on dynamics (3).

» ook at {x(i),y(i)}ie[n] C R? x R™ as i.i.d. samples from unknown
joint law p € P.(R? x R™). Then f(z) := E(y|x) which minimizes
E(2.)~pulf(x) — y|* over all functions f.

» Associated to (2): population risk minimization

T
min E(, | Px(T) — 2—|—)\/ O(t)|*dt 4
i B POT) <y [ e (@
x? solves (3)
x?(0)==x
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Generalization: a statistical approach
Focus on dynamics (3).

» ook at {x(i),y(i)}ie[n] C R? x R™ as i.i.d. samples from unknown
joint law p € P.(R? x R™). Then f(z) := E(y|x) which minimizes
E(2.)~pulf(x) — y|* over all functions f.

» Associated to (2): population risk minimization

T
min E(, | Px(T) — 2—|—)\/ O(t)|%dt 4
R B [PYT) <y [P (@)

x? solves (3)
x?(0)==x

» Generalization: 6, minimizer of J,, in (2), and 6* of J in (4), then
Ja > 0:

%k 1
E(zyymp [P (T) = yI? — Epyyonl PxX (T) —y|? = O (—>

an
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What i1s known

1. [E, Han, Li '19]:

>
>

>

Pontryagin Maximum Principle for both (2) and (4);

Hamiltonian 6 — H(x,p,0) = p - 0o(x) + \|0|* strongly concave for
any (z,p)

given 0%, with high probability 30,, critical point of Hamiltonian for

(2) such that
C(d)

1
nz ¢

0, 0*
E(z,yymp [PX(T) = y|* = Bz yympn|PX” (T) — y|* <

with high probability, for any € > 0.
Ensuring that 6, is global minimizer: true when T' < 1, so A > 1!
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What i1s known

1. [E, Han, Li '19]:

>
>

>

>

Pontryagin Maximum Principle for both (2) and (4);

Hamiltonian 6 — H(x,p,0) = p - 0o(x) + \|0|* strongly concave for
any (z,p)

given 0%, with high probability 30,, critical point of Hamiltonian for

(2) such that
C(d)

1
nz ¢

0, 0*
E(z,yymp [PX(T) = y|* = Bz yympn|PX” (T) — y|* <

with high probability, for any € > 0.
Ensuring that 6, is global minimizer: true when T' < 1, so A > 1!

2. [Bonnet et al. '22]:
> For A > 1, J, strongly convex on any L? ball

» Mean-field PMP ... rate O (%)
n d
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An observation with C. Letrouit and P. Rigollet
1. Strong convexity on any B C L?((0,T); R4*4)

H(91 — 92”%2 ,S ‘VJn(Hl) — VJn(92)| ; \V/(917(92 c B.
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An observation with C. Letrouit and P. Rigollet
. Strong convexity on any B C L?((0,T); R4X%)

H(91 — 92”%2 S ‘an((gl) — VJn(92)| ; \V/91,6’2 c B.
Then
0r, — 07|72 S IV Tn(0n) — VI (7))
— IVJ(67) — VI, (67)
= |E(py)~pn Vol (x7 ( — — Z Vol(x{ (T),y")
7,6 [n]

15 /27
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An observation with C. Letrouit and P. Rigollet
. Strong convexity on any B C L2((0,7); R4*4)

H(91 — 92”%2 S ‘VJn((gl) — VJn((gg)‘ : V91,6’2 c B.
Then
0r, = 0%[|72 S|V In(0n) — VI (67)]
_IVJ(6%) — VI, (67)]

* 1 * :
E(:c,y)m,uveg(xe (T)7 y) — ﬁ Z veé(Xf (T)7 y(Z))

. 0% is fixed, not random. Sum of bounded, independent random
variables, compared with expectation = concentration of measure
(Hoeffding inequality): V6 > 0, 9k > 0 such that Vn > 1,

P([|0n — 077> < £/v7n) =1

Bound J(6,,) — J(6*) from above and get O( ) rate.

S\H
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Improving 1/T

We consider

ceL?((0,T);R?
x;(+) solves (1)

T 4 9 T
in — g X; (1) — (2) 2
f )/0 nie[n] ‘P (1) — f(x )| dt+/0 lc(t)]“dt (5)

Controls a € L>®(R.;R%) and b € L°°(R,.) assumed fixed in (1) (need
L?-penalties and compactness simultaneously)

Can also consider dynamics as (3), or (a,b) can be optimized over S¢.
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Two assumptions

Recall, for X = [x; - -x,] € R¥X™:

Z ‘PXZ 2 (9) ‘

ze[n

Set Z :={Z c RY>": E(Z) = 0}. Then P ¢ R™*% is such that

kidist(X, 2)* < E(X) < kodist(X, Z)?
for some ko9 > k1 > 0, and VX € R4*",

» Lower bound: global Lojasiewicz inequality for analytic functions

17 /27
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Fix X = [x0..-x9] € R¥*™_ We assume 3¢ € L?((0,1); R%) such that
the matrix X € C°([0, 1]; R%*") with columns x;(-) solutions to (1) with
x;(0) = x?, satisfies X (1) € Z.

Moreover, 3C'(n) > 0,

/1 c(t)]?dt < C(n)dist(X°, Z)2.

18 /27
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Fix X = [x0..-x9] € R¥*™_ We assume 3¢ € L?((0,1); R%) such that
the matrix X € C’O([O, 1]; R%*™) with columns x;(-) solutions to (1) with
x;(0) = x?, satisfies X (1) € Z.

Moreover, 3C(n) > 0

1
/ o(t)2dt < C(n) dist(X°, 2)2.
0
» When d > m, then P € R%*" is generically surjective and
Z = {[Zl - 'Zn] = Ran: Z; © P_l{f(x(z))}}

So x;(1) € P~ H{ f(z\")} for all i € [n] and

1
t2dt < C inf — 2]
[ lewpar<cm on 2 I

21 zn]E i€[n]

18 /27
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Theorem [Esteve-Yagiie, G., Pighin, Zuazua, '22a]

Suppose m = d and P =1d. Then d7T,,w > 0, C > 1 such that for
T > T,, any global minimizer ¢z € L?((0,T); R?) to (5) and x! solution
to (1) satisfy

S F @) - 1) +ler@P < [ € X |29 - p@®)| | e

i€ [n] i€[n]

vt € [0,T].

19 /27
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Theorem [Esteve-Yagile, G., Pighin, Zuazua, '22b]

Replace (-). by 0 € L*°(R) in (1) and let d > m. Then 3T, w > 0,
C > 1 such that for T' > T, any global minimizer ¢z € L?((0,T); R?) to
(5) and x; solution to (1) satisfy

Z ‘PX f(:)j(Z))r inf Z ‘X _Zz —|— ’CT(t)‘Q

[Zl Zn ERan

el seP~ (29} *C
/ (i) ) t
< | C inf ‘az Y— 7 e
[Zl..-zn]ERdxn ’LEZ[’I’L]
\ sieP 11
vt € [0,T]
ERRZOE STATE ColfTRoL -
\ /i' o -\
| | iR
| I 1
\ /)’ ol \
L |V \ - ’

" : a » ' , 1 . , " ' : . . n
Lo (Fian mor) by kA Lager) P 16 13 A bower) 20 / 27
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Augmented empirical risk minimization

Concluding remarks

000000000 OO0
It's faster
p ‘a LY @ -
o \ 1 ‘p‘ .;'v" 7)/ l“.. \ ‘9
: }3'2" 2 ®g’ Q ¢ ¥ Y0
T 5y i Y - &)
SUeen, ?\) . > "“)".‘ % o o™ ")".’
4 " : :
‘ ) ' 3 () O ) -1_\ Q o .&1‘ -.)_. L
. ib‘p oge Jooe9y & 03 © %
:.‘ 200, J oi_p‘ . ‘ d ﬁ . b '.\
~ 4 & N ‘ ‘
IJ : e 4 : .QJ') % i
54 - q\ La' _ ’ -)?_ 'e Y
_‘:\ > ;%_)\ ) .)’, W ‘,\.
A e ' SO o
" o : 5 ¢ D &5 o |
R - "9 '?31‘ . AR TR E Tt
2 o P8 Lo

Takeaway: when possible, proceed in model predictive control manner:
start with small 7", evaluate error, and proceed by increasing 1" adaptively.
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Important tool

Focus on d = m, P = Id.

Lemma

3C1 > 0 independent of T, Vc € L? and x; solution to (1):

xi(t) — f(x <z>| <01(Z|(” (z)‘
T ‘2

w0 ) - £)

dt

22 /27
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Ingredients

. Caux(t) == c1(t)1}0,17(t), where c; ensures controllability. As cr is
optimal and c,,«x Is not, 3C5 > 0 independent of 1"

T 2
F@O)] dt [ lerPar <2 Y o fa)

1€[n]

Lemma yields pointwise bound uniform in T

. Shrink time-intervals:

23 /27
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Ingredients

1. caux(t) == c1(t)10,1)(t), where c; ensures controllability. As cr is
optimal and c,.x iIs not, 4C5 > 0 independent of T

2 T | 2
<Z>)| dt+/ er(t)]Pdt < Cy ) |:1:(7’) — £(z)
0

1€ [n]

Lemma yields pointwise bound uniform in T".
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Extensions

» Using this method, we can't have exponential decay with
BV -penalty for (a,b) as norm tracks singularities unlike L?. We can

at most get decay of time-averages of the error and controls.

» Results are more general. Per [Esteve-Yagie, G., Pighin, Zuazua
'22a; G., Zuazua '22]: controllable PDE

ye(t,z) — Ay(t, z) + Bu(t, z) = f(y(t, z))
with Lipschitz (possibly non-smooth) nonlinearity f and cost

¢@@»+A ww—m%ﬁ+lwmm%ﬁ

where ¢ Is any steady state = exponential turnpike without
smoothness or smallness assumptions!
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Further comments
1. L'(0,T)-penalties for (3) [Esteve-Yagiie, G. '22]:

2 3
t (k is a layer)
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Further comments
. L1(0, T)-penalties for (3) [Esteve-Yagiie, G. '22]:

TEEA:  Trwé ~DeredTedT GETD.

[

2 3 ;
t (k is a layer) Nt & B = 2

. Variable-width ResNets:

' )
a9 4 sf.q.cc,

1] — ikl k]l g (R [R))

where TIlF] : Rdr s Rdet+1 gl ¢ Rdrt1xdi  olk] ¢ Rdr+1Xdit1 G

ox(t,z) = /0 c(t,z,C)o(a(t, z,()x(t, ¢))dC (0,7T) x (0,1)

Helpful for structured controls (convolutional neural networks).
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Outlook

1. Control
» Exponential decay/turnpike with BV -penalty for (a,b)?
» Using control: are feedback controls for n > 1 trajectories possible,

useful?
» Extrapolating to control: can we get robustness using the lens of

many data and statistics?

2. Unsupervised learning/generative modeling with normalizing flows
(E. Vanden-Eijnden et al.).

» NF: diffeomorphism ¥ : R? — R? optimized to transport
{z(i)}ie[n] C R* samples from a known law pg (Gaussian with unit
variance) to unknown target law p; of which we know samples
{}iepm) C RY

» Parametrizing ‘€ by the flow of a neural ODE, and then solving an
optimal control problem (KL divergence) is quite practical.
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Merci pour votre attention!
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